ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.10492
33
27

CaMEL: Mean Teacher Learning for Image Captioning

21 February 2022
Manuele Barraco
Matteo Stefanini
Marcella Cornia
S. Cascianelli
Lorenzo Baraldi
Rita Cucchiara
    ViT
    VLM
ArXivPDFHTML
Abstract

Describing images in natural language is a fundamental step towards the automatic modeling of connections between the visual and textual modalities. In this paper we present CaMEL, a novel Transformer-based architecture for image captioning. Our proposed approach leverages the interaction of two interconnected language models that learn from each other during the training phase. The interplay between the two language models follows a mean teacher learning paradigm with knowledge distillation. Experimentally, we assess the effectiveness of the proposed solution on the COCO dataset and in conjunction with different visual feature extractors. When comparing with existing proposals, we demonstrate that our model provides state-of-the-art caption quality with a significantly reduced number of parameters. According to the CIDEr metric, we obtain a new state of the art on COCO when training without using external data. The source code and trained models are publicly available at: https://github.com/aimagelab/camel.

View on arXiv
Comments on this paper