ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.10163
16
2

DeepShovel: An Online Collaborative Platform for Data Extraction in Geoscience Literature with AI Assistance

21 February 2022
Shao Zhang
Yuting Jia
Hui Xu
Ying Wen
Dakuo Wang
Xinbing Wang
ArXivPDFHTML
Abstract

Geoscientists, as well as researchers in many fields, need to read a huge amount of literature to locate, extract, and aggregate relevant results and data to enable future research or to build a scientific database, but there is no existing system to support this use case well. In this paper, based on the findings of a formative study about how geoscientists collaboratively annotate literature and extract and aggregate data, we proposed DeepShovel, a publicly-available AI-assisted data extraction system to support their needs. DeepShovel leverages the state-of-the-art neural network models to support researcher(s) easily and accurately annotate papers (in the PDF format) and extract data from tables, figures, maps, etc. in a human-AI collaboration manner. A follow-up user evaluation with 14 researchers suggested DeepShovel improved users' efficiency of data extraction for building scientific databases, and encouraged teams to form a larger scale but more tightly-coupled collaboration.

View on arXiv
Comments on this paper