ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.08423
36
8
v1v2v3v4 (latest)

Chord-Conditioned Melody Choralization with Controllable Harmonicity and Polyphonicity

17 February 2022
Shangda Wu
Xiaobing Li
Maosong Sun
ArXiv (abs)PDFHTML
Abstract

Melody choralization, i.e. generating a four-part chorale based on a user-given melody, has long been closely associated with J.S. Bach chorales. Previous neural network-based systems rarely focus on chorale generation conditioned on a chord progression, and none of them realised controllable melody choralization. To enable neural networks to learn the general principles of counterpoint from Bach's chorales, we first design a music representation that encoded chord symbols for chord conditioning. We then propose DeepChoir, a melody choralization system, which can generate a four-part chorale for a given melody conditioned on a chord progression. Furthermore, with the improved density sampling, a user can control the extent of harmonicity and polyphonicity for the chorale generated by DeepChoir. Experimental results reveal the effectiveness of our data representation and the controllability of DeepChoir over harmonicity and polyphonicity. The code and generated samples (chorales, folk songs and a symphony) of DeepChoir, and the dataset we use now are available at https://github.com/sander-wood/deepchoir.

View on arXiv
Comments on this paper