ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.07451
6
0

Phenotyping with Positive Unlabelled Learning for Genome-Wide Association Studies

15 February 2022
A. Vauvelle
Hamish Tomlinson
Aaron Sim
Spiros C. Denaxas
ArXivPDFHTML
Abstract

Identifying phenotypes plays an important role in furthering our understanding of disease biology through practical applications within healthcare and the life sciences. The challenge of dealing with the complexities and noise within electronic health records (EHRs) has motivated applications of machine learning in phenotypic discovery. While recent research has focused on finding predictive subtypes for clinical decision support, here we instead focus on the noise that results in phenotypic misclassification, which can reduce a phenotypes ability to detect associations in genome-wide association studies (GWAS). We show that by combining anchor learning and transformer architectures into our proposed model, AnchorBERT, we are able to detect genomic associations only previously found in large consortium studies with 5×\times× more cases. When reducing the number of controls available by 50\%, we find our model is able to maintain 40\% more significant genomic associations from the GWAS catalog compared to standard phenotype definitions. \keywords{Phenotyping \and Machine Learning \and Semi-Supervised \and Genetic Association Studies \and Biological Discovery}

View on arXiv
Comments on this paper