ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.07191
10
6
v1v2v3 (latest)

Improving Human Sperm Head Morphology Classification with Unsupervised Anatomical Feature Distillation

15 February 2022
Yejia Zhang
Jingjing Zhang
Xiaomin Zha
Yirun Zhou
Yunxia Cao
Da-Ren Chen
ArXiv (abs)PDFHTML
Abstract

With rising male infertility, sperm head morphology classification becomes critical for accurate and timely clinical diagnosis. Recent deep learning (DL) morphology analysis methods achieve promising benchmark results, but leave performance and robustness on the table by relying on limited and possibly noisy class labels. To address this, we introduce a new DL training framework that leverages anatomical and image priors from human sperm microscopy crops to extract useful features without additional labeling cost. Our core idea is to distill sperm head information with reliably-generated pseudo-masks and unsupervised spatial prediction tasks. The predicted foreground masks from this distillation step are then leveraged to regularize and reduce image and label noise in the tuning stage. We evaluate our new approach on two public sperm datasets and achieve state-of-the-art performances (e.g. 65.9% SCIAN accuracy and 96.5% HuSHeM accuracy).

View on arXiv
Comments on this paper