ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.06316
29
0

Reverse Back Propagation to Make Full Use of Derivative

13 February 2022
Weiming Xiong
Ruoyu Yang
ArXivPDFHTML
Abstract

The development of the back-propagation algorithm represents a landmark in neural networks. We provide an approach that conducts the back-propagation again to reverse the traditional back-propagation process to optimize the input loss at the input end of a neural network for better effects without extra costs during the inference time. Then we further analyzed its principles and advantages and disadvantages, reformulated the weight initialization strategy for our method. And experiments on MNIST, CIFAR10, and CIFAR100 convinced our approaches could adapt to a larger range of learning rate and learn better than vanilla back-propagation.

View on arXiv
Comments on this paper