ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.04303
22
11

TinyM2^22Net: A Flexible System Algorithm Co-designed Multimodal Learning Framework for Tiny Devices

9 February 2022
Hasib-Al Rashid
Pretom Roy Ovi
Carl E. Busart
A. Gangopadhyay
T. Mohsenin
ArXivPDFHTML
Abstract

With the emergence of Artificial Intelligence (AI), new attention has been given to implement AI algorithms on resource constrained tiny devices to expand the application domain of IoT. Multimodal Learning has recently become very popular with the classification task due to its impressive performance for both image and audio event classification. This paper presents TinyM2^22Net -- a flexible system algorithm co-designed multimodal learning framework for resource constrained tiny devices. The framework was designed to be evaluated on two different case-studies: COVID-19 detection from multimodal audio recordings and battle field object detection from multimodal images and audios. In order to compress the model to implement on tiny devices, substantial network architecture optimization and mixed precision quantization were performed (mixed 8-bit and 4-bit). TinyM2^22Net shows that even a tiny multimodal learning model can improve the classification performance than that of any unimodal frameworks. The most compressed TinyM2^22Net achieves 88.4% COVID-19 detection accuracy (14.5% improvement from unimodal base model) and 96.8% battle field object detection accuracy (3.9% improvement from unimodal base model). Finally, we test our TinyM2^22Net models on a Raspberry Pi 4 to see how they perform when deployed to a resource constrained tiny device.

View on arXiv
Comments on this paper