ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.04176
14
0

Crime Hot-Spot Modeling via Topic Modeling and Relative Density Estimation

8 February 2022
Jonathan Y. Zhou
Sarah Huestis-Mitchell
Xiuyuan Cheng
Yao Xie
ArXivPDFHTML
Abstract

We present a method to capture groupings of similar calls and determine their relative spatial distribution from a collection of crime record narratives. We first obtain a topic distribution for each narrative, and then propose a nearest neighbors relative density estimation (kNN-RDE) approach to obtain spatial relative densities per topic. Experiments over a large corpus (n=475,019n=475,019n=475,019) of narrative documents from the Atlanta Police Department demonstrate the viability of our method in capturing geographic hot-spot trends which call dispatchers do not initially pick up on and which go unnoticed due to conflation with elevated event density in general.

View on arXiv
Comments on this paper