ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.03971
11
6

Computing Rule-Based Explanations of Machine Learning Classifiers using Knowledge Graphs

8 February 2022
Edmund Dervakos
Orfeas Menis-Mastromichalakis
A. Chortaras
Giorgos Stamou
    FAtt
ArXivPDFHTML
Abstract

The use of symbolic knowledge representation and reasoning as a way to resolve the lack of transparency of machine learning classifiers is a research area that lately attracts many researchers. In this work, we use knowledge graphs as the underlying framework providing the terminology for representing explanations for the operation of a machine learning classifier. In particular, given a description of the application domain of the classifier in the form of a knowledge graph, we introduce a novel method for extracting and representing black-box explanations of its operation, in the form of first-order logic rules expressed in the terminology of the knowledge graph.

View on arXiv
Comments on this paper