ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.02981
23
10
v1v2 (latest)

Neural Tangent Kernel Analysis of Deep Narrow Neural Networks

7 February 2022
Jongmin Lee
Jooyeon Choi
Ernest K. Ryu
Albert No
ArXiv (abs)PDFHTML
Abstract

The tremendous recent progress in analyzing the training dynamics of overparameterized neural networks has primarily focused on wide networks and therefore does not sufficiently address the role of depth in deep learning. In this work, we present the first trainability guarantee of infinitely deep but narrow neural networks. We study the infinite-depth limit of a multilayer perceptron (MLP) with a specific initialization and establish a trainability guarantee using the NTK theory. We then extend the analysis to an infinitely deep convolutional neural network (CNN) and perform brief experiments.

View on arXiv
Comments on this paper