ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.02687
17
27

Cross-Channel Attention-Based Target Speaker Voice Activity Detection: Experimental Results for M2MeT Challenge

6 February 2022
Weiqing Wang
Xiaoyi Qin
Ming Li
ArXivPDFHTML
Abstract

In this paper, we present the speaker diarization system for the Multi-channel Multi-party Meeting Transcription Challenge (M2MeT) from team DKU_DukeECE. As the highly overlapped speech exists in the dataset, we employ an x-vector-based target-speaker voice activity detection (TS-VAD) to find the overlap between speakers. For the single-channel scenario, we separately train a model for each of the 8 channels and fuse the results. We also employ the cross-channel self-attention to further improve the performance, where the non-linear spatial correlations between different channels are learned and fused. Experimental results on the evaluation set show that the single-channel TS-VAD reduces the DER by over 75% from 12.68\% to 3.14%. The multi-channel TS-VAD further reduces the DER by 28% and achieves a DER of 2.26%. Our final submitted system achieves a DER of 2.98% on the AliMeeting test set, which ranks 1st in the M2MET challenge.

View on arXiv
Comments on this paper