ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.01332
14
3

Training a Bidirectional GAN-based One-Class Classifier for Network Intrusion Detection

2 February 2022
Wen Xu
Ju-Seong Jang
Tong Liu
Fariza Sabrina
    GAN
ArXivPDFHTML
Abstract

The network intrusion detection task is challenging because of the imbalanced and unlabeled nature of the dataset it operates on. Existing generative adversarial networks (GANs), are primarily used for creating synthetic samples from reals. They also have been proved successful in anomaly detection tasks. In our proposed method, we construct the trained encoder-discriminator as a one-class classifier based on Bidirectional GAN (Bi-GAN) for detecting anomalous traffic from normal traffic other than calculating expensive and complex anomaly scores or thresholds. Our experimental result illustrates that our proposed method is highly effective to be used in network intrusion detection tasks and outperforms other similar generative methods on the NSL-KDD dataset.

View on arXiv
Comments on this paper