ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.01269
16
4

Robust Estimation for Nonparametric Families via Generative Adversarial Networks

2 February 2022
Banghua Zhu
Jiantao Jiao
Michael I. Jordan
    GAN
ArXivPDFHTML
Abstract

We provide a general framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems, which aim at estimating unknown parameter of the true distribution given adversarially corrupted samples. Prior work focus on the problem of robust mean and covariance estimation when the true distribution lies in the family of Gaussian distributions or elliptical distributions, and analyze depth or scoring rule based GAN losses for the problem. Our work extend these to robust mean estimation, second moment estimation, and robust linear regression when the true distribution only has bounded Orlicz norms, which includes the broad family of sub-Gaussian, sub-Exponential and bounded moment distributions. We also provide a different set of sufficient conditions for the GAN loss to work: we only require its induced distance function to be a cumulative density function of some light-tailed distribution, which is easily satisfied by neural networks with sigmoid activation. In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance, which overcomes the computational intractability of the original Kolmogorov-Smirnov distance used in the prior work.

View on arXiv
Comments on this paper