ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.00972
41
228

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

2 February 2022
Qing Xu
Zhicheng Ma
Nana He
Wenting Duan
    SSeg
    OOD
ArXivPDFHTML
Abstract

Deep learning architecture with convolutional neural network (CNN) achieves outstanding success in the field of computer vision. Where U-Net, an encoder-decoder architecture structured by CNN, makes a great breakthrough in biomedical image segmentation and has been applied in a wide range of practical scenarios. However, the equal design of every downsampling layer in the encoder part and simply stacked convolutions do not allow U-Net to extract sufficient information of features from different depths. The increasing complexity of medical images brings new challenges to the existing methods. In this paper, we propose a deeper and more compact split-attention u-shape network (DCSAU-Net), which efficiently utilises low-level and high-level semantic information based on two novel frameworks: primary feature conservation and compact split-attention block. We evaluate the proposed model on CVC-ClinicDB, 2018 Data Science Bowl, ISIC-2018 and SegPC-2021 datasets. As a result, DCSAU-Net displays better performance than other state-of-the-art (SOTA) methods in terms of the mean Intersection over Union (mIoU) and F1-socre. More significantly, the proposed model demonstrates excellent segmentation performance on challenging images. The code for our work and more technical details can be found at https://github.com/xq141839/DCSAU-Net.

View on arXiv
Comments on this paper