55
7

A Model for Multi-View Residual Covariances based on Perspective Deformation

Abstract

In this work, we derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups. The core of our approach is the formulation of the residual covariances as a combination of geometric and photometric noise sources. And our key novel contribution is the derivation of a term modelling how local 2D patches suffer from perspective deformation when imaging 3D surfaces around a point. Together, these add up to an efficient and general formulation which not only improves the accuracy of both feature-based and direct methods, but can also be used to estimate more accurate measures of the state entropy and hence better founded point visibility thresholds. We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment, improving their accuracy with a negligible overhead.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.