ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.12947
49
6

Fair Wrapping for Black-box Predictions

31 January 2022
Alexander Soen
Ibrahim M. Alabdulmohsin
Sanmi Koyejo
Yishay Mansour
Nyalleng Moorosi
Richard Nock
Ke Sun
Lexing Xie
    FaML
ArXivPDFHTML
Abstract

We introduce a new family of techniques to post-process ("wrap") a black-box classifier in order to reduce its bias. Our technique builds on the recent analysis of improper loss functions whose optimization can correct any twist in prediction, unfairness being treated as a twist. In the post-processing, we learn a wrapper function which we define as an α\alphaα-tree, which modifies the prediction. We provide two generic boosting algorithms to learn α\alphaα-trees. We show that our modification has appealing properties in terms of composition of α\alphaα-trees, generalization, interpretability, and KL divergence between modified and original predictions. We exemplify the use of our technique in three fairness notions: conditional value-at-risk, equality of opportunity, and statistical parity; and provide experiments on several readily available datasets.

View on arXiv
Comments on this paper