Two-component deterministic- and random-scan Gibbs samplers are studied using the theory of two projections. It is found that in terms of asymptotic variance, the two-component random-scan Gibbs sampler is never much worse, and could be considerably better than its deterministic-scan counterpart, provided that the selection probability is appropriately chosen. This is especially the case when there is a large discrepancy in computation cost between the two components. Together with previous results regarding the convergence rates of two-component Gibbs Markov chains, results herein suggest one may use the deterministic-scan version in the burn-in stage, and switch to the random-scan version in the estimation stage. The theory of two projections can also be utilized to study other properties of variants of two-component Gibbs samplers. As a side product, some general formulas for characterizing the convergence rate of a possibly non-reversible or time-inhomogeneous Markov chain in an operator theoretic framework are developed.
View on arXiv