ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.11582
20
4

GUDN: A novel guide network with label reinforcement strategy for extreme multi-label text classification

10 January 2022
Qing Wang
Jia Zhu
Hongji Shu
K. Asamoah
J. Shi
Cong Zhou
ArXivPDFHTML
Abstract

In natural language processing, extreme multi-label text classification is an emerging but essential task. The problem of extreme multi-label text classification (XMTC) is to recall some of the most relevant labels for a text from an extremely large label set. Large-scale pre-trained models have brought a new trend to this problem. Though the large-scale pre-trained models have made significant achievements on this problem, the valuable fine-tuned methods have yet to be studied. Though label semantics have been introduced in XMTC, the vast semantic gap between texts and labels has yet to gain enough attention. This paper builds a new guide network (GUDN) to help fine-tune the pre-trained model to instruct classification later. Furthermore, GUDN uses raw label semantics combined with a helpful label reinforcement strategy to effectively explore the latent space between texts and labels, narrowing the semantic gap, which can further improve predicted accuracy. Experimental results demonstrate that GUDN outperforms state-of-the-art methods on Eurlex-4k and has competitive results on other popular datasets. In an additional experiment, we investigated the input lengths' influence on the Transformer-based model's accuracy. Our source code is released at https://t.hk.uy/aFSH.

View on arXiv
Comments on this paper