ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.10866
27
27

CodeRetriever: Unimodal and Bimodal Contrastive Learning for Code Search

26 January 2022
Xiaonan Li
Yeyun Gong
Yelong Shen
Xipeng Qiu
Hang Zhang
Bolun Yao
Weizhen Qi
Daxin Jiang
Weizhu Chen
Nan Duan
    OffRL
ArXivPDFHTML
Abstract

In this paper, we propose the CodeRetriever model, which learns the function-level code semantic representations through large-scale code-text contrastive pre-training. We adopt two contrastive learning schemes in CodeRetriever: unimodal contrastive learning and bimodal contrastive learning. For unimodal contrastive learning, we design an unsupervised learning approach to build semantic-related code pairs based on the documentation and function name. For bimodal contrastive learning, we leverage the documentation and in-line comments of code to build code-text pairs. Both contrastive objectives can fully leverage large-scale code corpus for pre-training. Extensive experimental results show that CodeRetriever achieves new state-of-the-art with significant improvement over existing code pre-trained models, on eleven domain/language-specific code search tasks with six programming languages in different code granularity (function-level, snippet-level and statement-level). These results demonstrate the effectiveness and robustness of CodeRetriever.

View on arXiv
Comments on this paper