ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.08668
10
1

Clipped DeepControl: deep neural network two-dimensional pulse design with an amplitude constraint layer

21 January 2022
M. Vinding
T. Lund
ArXivPDFHTML
Abstract

Advanced radio-frequency pulse design used in magnetic resonance imaging has recently been demonstrated with deep learning of (convolutional) neural networks and reinforcement learning. For two-dimensionally selective radio-frequency pulses, the (convolutional) neural network pulse prediction time (few milliseconds) was in comparison more than three orders of magnitude faster than the conventional optimal control computation. The network pulses were from the supervised training capable of compensating scan-subject dependent inhomogeneities of B0 and B+1 fields. Unfortunately, the network presented with a non-negligible percentage of pulse amplitude overshoots in the test subset, despite the optimal control pulses used in training were fully constrained. Here, we have extended the convolutional neural network with a custom-made clipping layer that completely eliminates the risk of pulse amplitude overshoots, while preserving the ability to compensate the inhomogeneous field conditions.

View on arXiv
Comments on this paper