ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.08448
15
3

Kinit Classification in Ethiopian Chants, Azmaris and Modern Music: A New Dataset and CNN Benchmark

20 January 2022
E. A. Retta
R. Sutcliffe
Eiad Almekhlafi
Yosef K. Enku
Eyob Alemu
Tigist D. Gemechu
Michael Abebe Berwo
Mustafa Mhamed
Junlong Feng
ArXivPDFHTML
Abstract

In this paper, we create EMIR, the first-ever Music Information Retrieval dataset for Ethiopian music. EMIR is freely available for research purposes and contains 600 sample recordings of Orthodox Tewahedo chants, traditional Azmari songs and contemporary Ethiopian secular music. Each sample is classified by five expert judges into one of four well-known Ethiopian Kinits, Tizita, Bati, Ambassel and Anchihoye. Each Kinit uses its own pentatonic scale and also has its own stylistic characteristics. Thus, Kinit classification needs to combine scale identification with genre recognition. After describing the dataset, we present the Ethio Kinits Model (EKM), based on VGG, for classifying the EMIR clips. In Experiment 1, we investigated whether Filterbank, Mel-spectrogram, Chroma, or Mel-frequency Cepstral coefficient (MFCC) features work best for Kinit classification using EKM. MFCC was found to be superior and was therefore adopted for Experiment 2, where the performance of EKM models using MFCC was compared using three different audio sample lengths. 3s length gave the best results. In Experiment 3, EKM and four existing models were compared on the EMIR dataset: AlexNet, ResNet50, VGG16 and LSTM. EKM was found to have the best accuracy (95.00%) as well as the fastest training time. We hope this work will encourage others to explore Ethiopian music and to experiment with other models for Kinit classification.

View on arXiv
Comments on this paper