ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.08388
24
0
v1v2 (latest)

Steerable Pyramid Transform Enables Robust Left Ventricle Quantification

20 January 2022
Xiangyang Zhu
Kede Ma
Wufeng Xue
    MedIm
ArXiv (abs)PDFHTML
Abstract

Predicting cardiac indices has long been a focal point in the medical imaging community. While various deep learning models have demonstrated success in quantifying cardiac indices, they remain susceptible to mild input perturbations, e.g., spatial transformations, image distortions, and adversarial attacks. This vulnerability undermines confidence in using learning-based automated systems for diagnosing cardiovascular diseases. In this work, we describe a simple yet effective method to learn robust models for left ventricle (LV) quantification, encompassing cavity and myocardium areas, directional dimensions, and regional wall thicknesses. Our success hinges on employing the biologically inspired steerable pyramid transform (SPT) for fixed front-end processing, which offers three main benefits. First, the basis functions of SPT align with the anatomical structure of LV and the geometric features of the measured indices. Second, SPT facilitates weight sharing across different orientations as a form of parameter regularization and naturally captures the scale variations of LV. Third, the residual highpass subband can be conveniently discarded, promoting robust feature learning. Extensive experiments on the Cardiac-Dig benchmark show that our SPT-augmented model not only achieves reasonable prediction accuracy compared to state-of-the-art methods, but also exhibits significantly improved robustness against input perturbations.

View on arXiv
Comments on this paper