ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.08295
45
1
v1v2v3 (latest)

DIVA-DAF: A Deep Learning Framework for Historical Document Image Analysis

20 January 2022
Lars Vogtlin
A. Scius-Bertrand
Paul Maergner
ArXiv (abs)PDFHTML
Abstract

In this paper, we introduce a new deep learning framework called DIVA-DAF. We have developed this framework to support our research on historical document image analysis tasks and to develop techniques to reduce the need for manually-labeled ground truth. We want to apply self-supervised learning techniques and use different kinds of training data. Our new framework aids us in performing rapid prototyping and reproducible experiments. We present a first semantic segmentation experiment on DIVA-HisDB using our framework, achieving state-of-the-art results. The DIVA-DAF framework is open-source, and we encourage other research groups to use it for their experiments.

View on arXiv
Comments on this paper