ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.07890
53
12

Convolutional Neural Networks for Spherical Signal Processing via Spherical Haar Tight Framelets

17 January 2022
Jianfei Li
Han Feng
Xiaosheng Zhuang
ArXiv (abs)PDFHTML
Abstract

In this paper, we develop a general theoretical framework for constructing Haar-type tight framelets on any compact set with a hierarchical partition. In particular, we construct a novel area-regular hierarchical partition on the 2-sphere and establish its corresponding spherical Haar tight framelets with directionality. We conclude by evaluating and illustrating the effectiveness of our area-regular spherical Haar tight framelets in several denoising experiments. Furthermore, we propose a convolutional neural network (CNN) model for spherical signal denoising which employs the fast framelet decomposition and reconstruction algorithms. Experiment results show that our proposed CNN model outperforms threshold methods, and processes strong generalization and robustness properties.

View on arXiv
Comments on this paper