ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.07798
19
0

A Cognitive Explainer for Fetal ultrasound images classifier Based on Medical Concepts

19 January 2022
Ying-Shuai Wanga
Yunxia Liua
Licong Dongc
Xuzhou Wua
Huabin Zhangb
Qiongyu Yed
Desheng Sunc
Xiaobo Zhoue
Kehong Yuan
ArXivPDFHTML
Abstract

Fetal standard scan plane detection during 2-D mid-pregnancy examinations is a highly complex task, which requires extensive medical knowledge and years of training. Although deep neural networks (DNN) can assist inexperienced operators in these tasks, their lack of transparency and interpretability limit their application. Despite some researchers have been committed to visualizing the decision process of DNN, most of them only focus on the pixel-level features and do not take into account the medical prior knowledge. In this work, we propose an interpretable framework based on key medical concepts, which provides explanations from the perspective of clinicians' cognition. Moreover, we utilize a concept-based graph convolutional neural(GCN) network to construct the relationships between key medical concepts. Extensive experimental analysis on a private dataset has shown that the proposed method provides easy-to-understand insights about reasoning results for clinicians.

View on arXiv
Comments on this paper