ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.07698
20
0

Visualization and Analysis of Wearable Health Data From COVID-19 Patients

19 January 2022
S. Suter
Georg R. Spinner
Bianca Hoelz
Sofia Rey
S. Thanabalasingam
J. Eckstein
S. Hirsch
ArXiv (abs)PDFHTML
Abstract

Effective visualizations were evaluated to reveal relevant health patterns from multi-sensor real-time wearable devices that recorded vital signs from patients admitted to hospital with COVID-19. Furthermore, specific challenges associated with wearable health data visualizations, such as fluctuating data quality resulting from compliance problems, time needed to charge the device and technical problems are described. As a primary use case, we examined the detection and communication of relevant health patterns visible in the vital signs acquired by the technology. Customized heat maps and bar charts were used to specifically highlight medically relevant patterns in vital signs. A survey of two medical doctors, one clinical project manager and seven health data science researchers was conducted to evaluate the visualization methods. From a dataset of 84 hospitalized COVID-19 patients, we extracted one typical COVID-19 patient history and based on the visualizations showcased the health history of two noteworthy patients. The visualizations were shown to be effective, simple and intuitive in deducing the health status of patients. For clinical staff who are time-constrained and responsible for numerous patients, such visualization methods can be an effective tool to enable continuous acquisition and monitoring of patients' health statuses even remotely.

View on arXiv
Comments on this paper