ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.05887
75
20
v1v2 (latest)

Domain Adaptation via Bidirectional Cross-Attention Transformer

15 January 2022
Xiyu Wang
Pengxin Guo
Yu Zhang
    ViT
ArXiv (abs)PDFHTML
Abstract

Domain Adaptation (DA) aims to leverage the knowledge learned from a source domain with ample labeled data to a target domain with unlabeled data only. Most existing studies on DA contribute to learning domain-invariant feature representations for both domains by minimizing the domain gap based on convolution-based neural networks. Recently, vision transformers significantly improved performance in multiple vision tasks. Built on vision transformers, in this paper we propose a Bidirectional Cross-Attention Transformer (BCAT) for DA with the aim to improve the performance. In the proposed BCAT, the attention mechanism can extract implicit source and target mix-up feature representations to narrow the domain discrepancy. Specifically, in BCAT, we design a weight-sharing quadruple-branch transformer with a bidirectional cross-attention mechanism to learn domain-invariant feature representations. Extensive experiments demonstrate that the proposed BCAT model achieves superior performance on four benchmark datasets over existing state-of-the-art DA methods that are based on convolutions or transformers.

View on arXiv
Comments on this paper