33
9

Semantic decoupled representation learning for remote sensing image change detection

Abstract

Contemporary transfer learning-based methods to alleviate the data insufficiency in change detection (CD) are mainly based on ImageNet pre-training. Self-supervised learning (SSL) has recently been introduced to remote sensing (RS) for learning in-domain representations. Here, we propose a semantic decoupled representation learning for RS image CD. Typically, the object of interest (e.g., building) is relatively small compared to the vast background. Different from existing methods expressing an image into one representation vector that may be dominated by irrelevant land-covers, we disentangle representations of different semantic regions by leveraging the semantic mask. We additionally force the model to distinguish different semantic representations, which benefits the recognition of objects of interest in the downstream CD task. We construct a dataset of bitemporal images with semantic masks in an effortless manner for pre-training. Experiments on two CD datasets show our model outperforms ImageNet pre-training, in-domain supervised pre-training, and several recent SSL methods.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.