ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.05742
21
42

Kformer: Knowledge Injection in Transformer Feed-Forward Layers

15 January 2022
Yunzhi Yao
Shaohan Huang
Li Dong
Furu Wei
Huajun Chen
Ningyu Zhang
    KELM
    MedIm
ArXivPDFHTML
Abstract

Recent days have witnessed a diverse set of knowledge injection models for pre-trained language models (PTMs); however, most previous studies neglect the PTMs' own ability with quantities of implicit knowledge stored in parameters. A recent study has observed knowledge neurons in the Feed Forward Network (FFN), which are responsible for expressing factual knowledge. In this work, we propose a simple model, Kformer, which takes advantage of the knowledge stored in PTMs and external knowledge via knowledge injection in Transformer FFN layers. Empirically results on two knowledge-intensive tasks, commonsense reasoning (i.e., SocialIQA) and medical question answering (i.e., MedQA-USMLE), demonstrate that Kformer can yield better performance than other knowledge injection technologies such as concatenation or attention-based injection. We think the proposed simple model and empirical findings may be helpful for the community to develop more powerful knowledge injection methods. Code available in https://github.com/zjunlp/Kformer.

View on arXiv
Comments on this paper