16
0

An Overview of Uncertainty Quantification Methods for Infinite Neural Networks

Abstract

To better understand the theoretical behavior of large neural networks, several works have analyzed the case where a network's width tends to infinity. In this regime, the effect of random initialization and the process of training a neural network can be formally expressed with analytical tools like Gaussian processes and neural tangent kernels. In this paper, we review methods for quantifying uncertainty in such infinite-width neural networks and compare their relationship to Gaussian processes in the Bayesian inference framework. We make use of several equivalence results along the way to obtain exact closed-form solutions for predictive uncertainty.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.