ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.04596
24
24

MeTeoR: Practical Reasoning in Datalog with Metric Temporal Operators

12 January 2022
Dingmin Wang
Pan Hu
P. Walega
Bernardo Cuenca Grau
    OffRLAI4CELRM
ArXiv (abs)PDFHTML
Abstract

DatalogMTL is an extension of Datalog with operators from metric temporal logic which has received significant attention in recent years. It is a highly expressive knowledge representation language that is well-suited for applications in temporal ontology-based query answering and stream processing. Reasoning in DatalogMTL is, however, of high computational complexity, making implementation challenging and hindering its adoption in applications. In this paper, we present a novel approach for practical reasoning in DatalogMTL which combines materialisation (a.k.a. forward chaining) with automata-based techniques. We have implemented this approach in a reasoner called MeTeoR and evaluated its performance using a temporal extension of the Lehigh University Benchmark and a benchmark based on real-world meteorological data. Our experiments show that MeTeoR is a scalable system which enables reasoning over complex temporal rules and datasets involving tens of millions of temporal facts.

View on arXiv
Comments on this paper