ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.04387
11
16

Maximizing Self-supervision from Thermal Image for Effective Self-supervised Learning of Depth and Ego-motion

12 January 2022
Ukcheol Shin
Kyunghyun Lee
Byeong-uk Lee
In So Kweon
    MDE
ArXivPDFHTML
Abstract

Recently, self-supervised learning of depth and ego-motion from thermal images shows strong robustness and reliability under challenging scenarios. However, the inherent thermal image properties such as weak contrast, blurry edges, and noise hinder to generate effective self-supervision from thermal images. Therefore, most research relies on additional self-supervision sources such as well-lit RGB images, generative models, and Lidar information. In this paper, we conduct an in-depth analysis of thermal image characteristics that degenerates self-supervision from thermal images. Based on the analysis, we propose an effective thermal image mapping method that significantly increases image information, such as overall structure, contrast, and details, while preserving temporal consistency. The proposed method shows outperformed depth and pose results than previous state-of-the-art networks without leveraging additional RGB guidance.

View on arXiv
Comments on this paper