ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.04086
11
0

Application of Common Spatial Patterns in Gravitational Waves Detection

11 January 2022
Damodar Dahal
ArXivPDFHTML
Abstract

Common Spatial Patterns (CSP) is a feature extraction algorithm widely used in Brain-Computer Interface (BCI) Systems for detecting Event-Related Potentials (ERPs) in multi-channel magneto/electroencephalography (MEG/EEG) time series data. In this article, we develop and apply a CSP algorithm to the problem of identifying whether a given epoch of multi-detector Gravitational Wave (GW) strains contains coalescenses. Paired with Signal Processing techniques and a Logistic Regression classifier, we find that our pipeline is correctly able to detect 76 out of 82 confident events from Gravitational Wave Transient Catalog, using H1 and L1 strains, with a classification score of 93.72±0.04%93.72 \pm 0.04\%93.72±0.04% using 10×510 \times 510×5 cross validation. The false negative events were: GW170817-v3, GW191219 163120-v1, GW200115 042309-v2, GW200210 092254-v1, GW200220 061928-v1, and GW200322 091133-v1.

View on arXiv
Comments on this paper