ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.02538
14
0

Improving Surrogate Gradient Learning in Spiking Neural Networks via Regularization and Normalization

13 December 2021
Nandan Meda
ArXivPDFHTML
Abstract

Spiking neural networks (SNNs) are different from the classical networks used in deep learning: the neurons communicate using electrical impulses called spikes, just like biological neurons. SNNs are appealing for AI technology, because they could be implemented on low power neuromorphic chips. However, SNNs generally remain less accurate than their analog counterparts. In this report, we examine various regularization and normalization techniques with the goal of improving surrogate gradient learning in SNNs.

View on arXiv
Comments on this paper