34
5

Deep Domain Adversarial Adaptation for Photon-efficient Imaging

Abstract

Photon-efficient imaging with the single-photon light detection and ranging (LiDAR) captures the three-dimensional (3D) structure of a scene by only a few detected signal photons per pixel. However, the existing computational methods for photon-efficient imaging are pre-tuned on a restricted scenario or trained on simulated datasets. When applied to realistic scenarios whose signal-to-background ratios (SBR) and other hardware-specific properties differ from those of the original task, the model performance often significantly deteriorates. In this paper, we present a domain adversarial adaptation design to alleviate this domain shift problem by exploiting unlabeled real-world data, with significant resource savings. This method demonstrates superior performance on simulated and real-world experiments using our home-built up-conversion single-photon imaging system, which provides an efficient approach to bypass the lack of ground-truth depth information in implementing computational imaging algorithms for realistic applications.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.