ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.00565
17
18

Swift and Sure: Hardness-aware Contrastive Learning for Low-dimensional Knowledge Graph Embeddings

3 January 2022
Kai Wang
Yu Liu
Quan.Z Sheng
ArXivPDFHTML
Abstract

Knowledge graph embedding (KGE) has shown great potential in automatic knowledge graph (KG) completion and knowledge-driven tasks. However, recent KGE models suffer from high training cost and large storage space, thus limiting their practicality in real-world applications. To address this challenge, based on the latest findings in the field of Contrastive Learning, we propose a novel KGE training framework called Hardness-aware Low-dimensional Embedding (HaLE). Instead of the traditional Negative Sampling, we design a new loss function based on query sampling that can balance two important training targets, Alignment and Uniformity. Furthermore, we analyze the hardness-aware ability of recent low-dimensional hyperbolic models and propose a lightweight hardness-aware activation mechanism. The experimental results show that in the limited training time, HaLE can effectively improve the performance and training speed of KGE models on five commonly-used datasets. After training just a few minutes, the HaLE-trained models are competitive compared to the state-of-the-art models in both low- and high-dimensional conditions.

View on arXiv
Comments on this paper