ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.15331
6
1

Using Graph-Aware Reinforcement Learning to Identify Winning Strategies in Diplomacy Games (Student Abstract)

31 December 2021
Hansin Ahuja
Lynnette Hui Xian Ng
Kokil Jaidka
ArXivPDFHTML
Abstract

This abstract proposes an approach towards goal-oriented modeling of the detection and modeling complex social phenomena in multiparty discourse in an online political strategy game. We developed a two-tier approach that first encodes sociolinguistic behavior as linguistic features then use reinforcement learning to estimate the advantage afforded to any player. In the first tier, sociolinguistic behavior, such as Friendship and Reasoning, that speakers use to influence others are encoded as linguistic features to identify the persuasive strategies applied by each player in simultaneous two-party dialogues. In the second tier, a reinforcement learning approach is used to estimate a graph-aware reward function to quantify the advantage afforded to each player based on their standing in this multiparty setup. We apply this technique to the game Diplomacy, using a dataset comprising of over 15,000 messages exchanged between 78 users. Our graph-aware approach shows robust performance compared to a context-agnostic setup.

View on arXiv
Comments on this paper