ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.15026
20
1
v1v2 (latest)

Two Instances of Interpretable Neural Network for Universal Approximations

30 December 2021
Erico Tjoa
G. Cuntai
ArXiv (abs)PDFHTML
Abstract

This paper proposes two bottom-up interpretable neural network (NN) constructions for universal approximation, namely Triangularly-constructed NN (TNN) and Semi-Quantized Activation NN (SQANN). Further notable properties are (1) resistance to catastrophic forgetting (2) existence of proof for arbitrarily high accuracies (3) the ability to identify samples that are out-of-distribution through interpretable activation "fingerprints".

View on arXiv
Comments on this paper