ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.13522
22
171

Dual Contrastive Learning for General Face Forgery Detection

27 December 2021
Ke Sun
Taiping Yao
Shen Chen
Shouhong Ding
L. Jilin
Rongrong Ji
    CVBM
ArXivPDFHTML
Abstract

With various facial manipulation techniques arising, face forgery detection has drawn growing attention due to security concerns. Previous works always formulate face forgery detection as a classification problem based on cross-entropy loss, which emphasizes category-level differences rather than the essential discrepancies between real and fake faces, limiting model generalization in unseen domains. To address this issue, we propose a novel face forgery detection framework, named Dual Contrastive Learning (DCL), which specially constructs positive and negative paired data and performs designed contrastive learning at different granularities to learn generalized feature representation. Concretely, combined with the hard sample selection strategy, Inter-Instance Contrastive Learning (Inter-ICL) is first proposed to promote task-related discriminative features learning by especially constructing instance pairs. Moreover, to further explore the essential discrepancies, Intra-Instance Contrastive Learning (Intra-ICL) is introduced to focus on the local content inconsistencies prevalent in the forged faces by constructing local-region pairs inside instances. Extensive experiments and visualizations on several datasets demonstrate the generalization of our method against the state-of-the-art competitors.

View on arXiv
Comments on this paper