ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.13285
18
0
v1v2 (latest)

Pedagogical Rule Extraction to Learn Interpretable Models - an Empirical Study

25 December 2021
Vadim Arzamasov
Benjamin Jochum
Klemens Bohm
    ELM
ArXiv (abs)PDFHTML
Abstract

Machine-learning models are ubiquitous. In some domains, for instance, in medicine, the models' predictions must be interpretable. Decision trees, classification rules, and subgroup discovery are three broad categories of supervised machine-learning models presenting knowledge in the form of interpretable rules. The accuracy of these models learned from small datasets is usually low. Obtaining larger datasets is often hard to impossible. Pedagogical rule extraction methods could help to learn better rules from small data by augmenting a dataset employing statistical models and using it to learn a rule-based model. However, existing evaluation of these methods is often inconclusive, and they were not compared so far. Our framework PRELIM unifies existing pedagogical rule extraction techniques. In the extensive experiments, we identified promising PRELIM configurations not studied before.

View on arXiv
Comments on this paper