In this paper, we present list autoencoder (listAE) to mimic list decoding used in classical coding theory. With listAE, the decoder network outputs a list of decoded message word candidates. To train the listAE, a genie is assumed to be available at the output of the decoder. A specific loss function is proposed to optimize the performance of a genie-aided (GA) list decoding. The listAE is a general framework and can be used with any AE architecture. We propose a specific architecture, referred to as incremental-redundancy AE (IR-AE), which decodes the received word on a sequence of component codes with non-increasing rates. Then, the listAE is trained and evaluated with both IR-AE and Turbo-AE. Finally, we employ cyclic redundancy check (CRC) codes to replace the genie at the decoder output and obtain a CRC aided (CA) list decoder. Our simulation results show that the IR-AE under CA list decoding demonstrates meaningful coding gain over Turbo-AE and polar code at low block error rates range.
View on arXiv