ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.11071
25
374
v1v2 (latest)

Explanation of Machine Learning Models Using Shapley Additive Explanation and Application for Real Data in Hospital

21 December 2021
Yasunobu Nohara
Koutarou Matsumoto
H. Soejima
N. Nakashima
    FAttFedML
ArXiv (abs)PDFHTML
Abstract

When using machine learning techniques in decision-making processes, the interpretability of the models is important. In the present paper, we adopted the Shapley additive explanation (SHAP), which is based on fair profit allocation among many stakeholders depending on their contribution, for interpreting a gradient-boosting decision tree model using hospital data. For better interpretability, we propose two novel techniques as follows: (1) a new metric of feature importance using SHAP and (2) a technique termed feature packing, which packs multiple similar features into one grouped feature to allow an easier understanding of the model without reconstruction of the model. We then compared the explanation results between the SHAP framework and existing methods. In addition, we showed how the A/G ratio works as an important prognostic factor for cerebral infarction using our hospital data and proposed techniques.

View on arXiv
Comments on this paper