ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.08548
14
8

Isochrony-Aware Neural Machine Translation for Automatic Dubbing

16 December 2021
Derek Tam
Surafel Melaku Lakew
Yogesh Virkar
Prashant Mathur
Marcello Federico
ArXivPDFHTML
Abstract

We introduce the task of isochrony-aware machine translation which aims at generating translations suitable for dubbing. Dubbing of a spoken sentence requires transferring the content as well as the speech-pause structure of the source into the target language to achieve audiovisual coherence. Practically, this implies correctly projecting pauses from the source to the target and ensuring that target speech segments have roughly the same duration of the corresponding source speech segments. In this work, we propose implicit and explicit modeling approaches to integrate isochrony information into neural machine translation. Experiments on English-German/French language pairs with automatic metrics show that the simplest of the considered approaches works best. Results are confirmed by human evaluations of translations and dubbed videos.

View on arXiv
Comments on this paper