Estimating Uncertainty For Vehicle Motion Prediction on Yandex Shifts Dataset

Abstract
Motion prediction of surrounding agents is an important task in context of autonomous driving since it is closely related to driver's safety. Vehicle Motion Prediction (VMP) track of Shifts Challenge focuses on developing models which are robust to distributional shift and able to measure uncertainty of their predictions. In this work we present the approach that significantly improved provided benchmark and took 2nd place on the leaderboard.
View on arXivComments on this paper