ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.07918
39
11
v1v2v3 (latest)

M-FasterSeg: An Efficient Semantic Segmentation Network Based on Neural Architecture Search

15 December 2021
Junjun Wu
Huiyu Kuang
Qinghua Lu
Zeqin Lin
Qingwu Shi
Xilin Liu
Xiaoman Zhu
    SSeg
ArXiv (abs)PDFHTML
Abstract

Image semantic segmentation technology is one of the key technologies for intelligent systems to understand natural scenes. As one of the important research directions in the field of visual intelligence, this technology has broad application scenarios in the fields of mobile robots, drones, smart driving, and smart security. However, in the actual application of mobile robots, problems such as inaccurate segmentation semantic label prediction and loss of edge information of segmented objects and background may occur. This paper proposes an improved structure of a semantic segmentation network based on a deep learning network that combines self-attention neural network and neural network architecture search methods. First, a neural network search method NAS (Neural Architecture Search) is used to find a semantic segmentation network with multiple resolution branches. In the search process, combine the self-attention network structure module to adjust the searched neural network structure, and then combine the semantic segmentation network searched by different branches to form a fast semantic segmentation network structure, and input the picture into the network structure to get the final forecast result. The experimental results on the Cityscapes dataset show that the accuracy of the algorithm is 69.8%, and the segmentation speed is 48/s. It achieves a good balance between real-time and accuracy, can optimize edge segmentation, and has a better performance in complex scenes. Good robustness is suitable for practical application.

View on arXiv
Comments on this paper