36
7

Kernel-aware Burst Blind Super-Resolution

Abstract

Burst super-resolution (SR) technique provides a possibility of restoring rich details from low-quality images. However, since real world low-resolution (LR) images in practical applications have multiple complicated and unknown degradations, existing non-blind (e.g., bicubic) designed networks usually suffer severe performance drop in recovering high-resolution (HR) images. In this paper, we address the problem of reconstructing HR images from raw burst sequences acquired from a modern handheld device. The central idea is a kernel-guided strategy which can solve the burst SR problem with two steps: kernel estimation and HR image restoration. The former estimates burst kernels from raw inputs, while the latter predicts the super-resolved image based on the estimated kernels. Furthermore, we introduce a pyramid kernel-aware deformable alignment module which can effectively align the raw images with consideration of the blurry priors. Extensive experiments on synthetic and real-world datasets demonstrate that the proposed method can perform favorable state-of-the-art performance in the burst SR problem. Our codes are available at \url{https://github.com/shermanlian/KBNet}.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.