ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.06558
24
46

MAGIC: Multimodal relAtional Graph adversarIal inferenCe for Diverse and Unpaired Text-based Image Captioning

13 December 2021
Wenqiao Zhang
Haochen Shi
Jiannan Guo
Shengyu Zhang
Qingpeng Cai
Juncheng Li
Sihui Luo
Yueting Zhuang
    DiffM
ArXivPDFHTML
Abstract

Text-based image captioning (TextCap) requires simultaneous comprehension of visual content and reading the text of images to generate a natural language description. Although a task can teach machines to understand the complex human environment further given that text is omnipresent in our daily surroundings, it poses additional challenges in normal captioning. A text-based image intuitively contains abundant and complex multimodal relational content, that is, image details can be described diversely from multiview rather than a single caption. Certainly, we can introduce additional paired training data to show the diversity of images' descriptions, this process is labor-intensive and time-consuming for TextCap pair annotations with extra texts. Based on the insight mentioned above, we investigate how to generate diverse captions that focus on different image parts using an unpaired training paradigm. We propose the Multimodal relAtional Graph adversarIal inferenCe (MAGIC) framework for diverse and unpaired TextCap. This framework can adaptively construct multiple multimodal relational graphs of images and model complex relationships among graphs to represent descriptive diversity. Moreover, a cascaded generative adversarial network is developed from modeled graphs to infer the unpaired caption generation in image-sentence feature alignment and linguistic coherence levels. We validate the effectiveness of MAGIC in generating diverse captions from different relational information items of an image. Experimental results show that MAGIC can generate very promising outcomes without using any image-caption training pairs.

View on arXiv
Comments on this paper