ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.04298
36
25
v1v2v3 (latest)

GCA-Net : Utilizing Gated Context Attention for Improving Image Forgery Localization and Detection

8 December 2021
Sowmen Das
Md. Saiful Islam
Md Ruhul Amin
ArXiv (abs)PDFHTML
Abstract

Forensic analysis of manipulated pixels requires the identification of various hidden and subtle features from images. Conventional image recognition models generally fail at this task because they are biased and more attentive toward the dominant local and spatial features. In this paper, we propose a novel Gated Context Attention Network (GCA-Net) that utilizes non-local attention in conjunction with a gating mechanism in order to capture the finer image discrepancies and better identify forged regions. The proposed framework uses high dimensional embeddings to filter and aggregate the relevant context from coarse feature maps at various stages of the decoding process. This improves the network's understanding of global differences and reduces false-positive localizations. Our evaluation on standard image forensic benchmarks shows that GCA-Net can both compete against and improve over state-of-the-art networks by an average of 4.7% AUC. Additional ablation studies also demonstrate the method's robustness against attributions and resilience to false-positive predictions.

View on arXiv
Comments on this paper