ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.03217
14
4

Minimax properties of Dirichlet kernel density estimators

6 December 2021
Karine Bertin
Christian Genest
N. Klutchnikoff
Frédéric Ouimet
ArXivPDFHTML
Abstract

This paper considers the asymptotic behavior in β\betaβ-H\"older spaces, and under LpL^pLp losses, of a Dirichlet kernel density estimator proposed by Aitchison and Lauder (1985) for the analysis of compositional data. In recent work, Ouimet and Tolosana-Delgado (2022) established the uniform strong consistency and asymptotic normality of this estimator. As a complement, it is shown here that the Aitchison-Lauder estimator can achieve the minimax rate asymptotically for a suitable choice of bandwidth whenever (p,β)∈[1,3)×(0,2](p,\beta) \in [1, 3) \times (0, 2](p,β)∈[1,3)×(0,2] or (p,β)∈Ad(p, \beta) \in \mathcal{A}_d(p,β)∈Ad​, where Ad\mathcal{A}_dAd​ is a specific subset of [3,4)×(0,2][3, 4) \times (0, 2][3,4)×(0,2] that depends on the dimension ddd of the Dirichlet kernel. It is also shown that this estimator cannot be minimax when either p∈[4,∞)p \in [4, \infty)p∈[4,∞) or β∈(2,∞)\beta \in (2, \infty)β∈(2,∞). These results extend to the multivariate case, and also rectify in a minor way, earlier findings of Bertin and Klutchnikoff (2011) concerning the minimax properties of Beta kernel estimators.

View on arXiv
Comments on this paper