ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.03030
21
14

Pose2Room: Understanding 3D Scenes from Human Activities

1 December 2021
Y. Nie
Angela Dai
Xiaoguang Han
Matthias Nießner
ArXivPDFHTML
Abstract

With wearable IMU sensors, one can estimate human poses from wearable devices without requiring visual input~\cite{von2017sparse}. In this work, we pose the question: Can we reason about object structure in real-world environments solely from human trajectory information? Crucially, we observe that human motion and interactions tend to give strong information about the objects in a scene -- for instance a person sitting indicates the likely presence of a chair or sofa. To this end, we propose P2R-Net to learn a probabilistic 3D model of the objects in a scene characterized by their class categories and oriented 3D bounding boxes, based on an input observed human trajectory in the environment. P2R-Net models the probability distribution of object class as well as a deep Gaussian mixture model for object boxes, enabling sampling of multiple, diverse, likely modes of object configurations from an observed human trajectory. In our experiments we show that P2R-Net can effectively learn multi-modal distributions of likely objects for human motions, and produce a variety of plausible object structures of the environment, even without any visual information. The results demonstrate that P2R-Net consistently outperforms the baselines on the PROX dataset and the VirtualHome platform.

View on arXiv
Comments on this paper